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Abstract

In this paper we analyze weather maps to distinguish between the three main cir-
culation forms which are essential factors for weather composition and arefunda-
mental for weather forecasters. We propose a set of features speci�cally tailored for
the classi�cation of these circulation forms inGeneral Weather Situationsand use
these to train a support vector machine for classi�cation. Additionally, we propose
a semi-automatic algorithm to extract the necessary data directly from the weather
maps itself. This enables us to also analyze historic map material for which the
original data is not available anymore. In order to reconstruct the weather data,
we extract and analyze the isolines from the weather maps based on color and line
thickness as well as symbolic and numerical features using template matching tech-
niques. We reconstruct the dense wind alignment �eld and air velocity �eld from
these sparse data and extract expressive feature vectors to classifythe presented
main circulation forms. Our algorithm shows an overall classi�cation success rate
of 61% for the three main circulation forms zonal, meridional and mixed.
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1 INTRODUCTION

1 Introduction

The circulation patterns of the atmosphere are an essential factor in weather compo-
sition and are fundamental for weather forecasters. Surface and upper air weather
maps depicting positions for high and low pressure regions deliver a goodapprox-
imation of the circulation. These maps are de�ned over a geographical region at
a speci�ed time, based on information from weather stations. For weather pre-
dictions, they help to classify the atmospheric state inGeneral Weather Situations
(GWS). F. Baur describes GWS as the average distribution of air pressure over a
large region (at least the size of Europe) [WG09]. TheseWeather Situationscan
be subdivided into three main circulation forms, e.g. in Europe: zonal, meridional
and mixed.

The decision of whichWeather Situationprevails in the atmosphere is made
by specialists that analyze the maps at different days (at least 3 days withthe same
patterns). A necessity for the classi�cation is the knowledge of the air circula-
tion in the atmosphere. The upper air weather maps depict positions for high and
low pressure regions from which the circulation needs to be derived. Some earlier
approaches [Lun63, MS85] classify weather situations by automatically de�ning
a set of criteria or features. However, despite their automatism, the classi�cation
using the automatically extracted features might dissent from the subjective opin-
ion of the specialist. In the work of Jameset al. [Jam07] a hybrid approach was
therefore proposed which combined a manual feature selection with an objective
classi�cation scheme. Unfortunately, classi�cation is only one part of the problem
when analyzing weather maps. In the case of historic map material the necessary
data needs to be reconstructed �rst. None of the aforementioned techniques is able
to provide automatic classi�cation of the circulation forms from the weather maps
itself.

We propose to use a semi-automatic approach to reconstruct air circulation in-
formation from upper air weather maps to classify GWS. Our main idea is to �rst
interactively extract the air pressure isolines from the weather maps. Template
matching extracts the symbolic features, e.g. the high and low air pressure peaks,
denoted by “H” and “T” respectively in Figure 2, as well as the numericalsym-
bols depicting the absolute value of air pressure along the line. We reconstruct a
dense wind alignment �eld and air velocity �eld and extract an optimized feature
descriptor from these which in turn is used for supervised training of a support
vector machine (SVM). This way the subjective knowledge of the specialistis in-
corporated opposed to using only objective features from the data.

Our approach can support meteorologists to understand the weather behaviour
on large scales. Standard weather or distribution forecasts are some of the appli-
cations. Regarding accidents like the destruction of the Fukushima power plant,
in Japan 2011, the GWS in such regions can steer in large scale how a radiation
plume distributes in the atmosphere. Furthermore, for climate research, changes
in long-term GWS are an important driver/indicator of regional climatic change,
and support the understanding of local trends (e.g. of changes in temperature or
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2 RELATED WORK & BACKGROUND

precipitation patterns). In such cases, the correct classi�cation of the circulation
form in GWS is of highest priority.

Additionally, our interactive reconstruction of air pressure from maps itself
is bene�cial to classify the weather situations in historic map material for which
the original data is lost. The reconstructed information can then be used fordata
mining of weather data archives, e.g. to compare current conspicious constellations
with similar situations and their outcome in the past.

In the rest of the paper we describe our algorithm in gradual steps. After re-
viewing previous work in Section 2, we explain our classi�cation approachin Sec-
tion 3, including our feature extraction and reconstruction of the wind alignment
and air velocity �eld, Section 3.1, as well as our optimized feature descriptorand
SVM classi�er, Section 3.2. Section 4 conveys an analysis and discussionof our
classi�cation results. We conclude in Section 5 with a summary and give a prospec-
tive outlook on future work.

2 Related Work & Background

In this interdisciplinary work, we combine techniques from the �eld of visualiza-
tion, image processing, and machine learning in order to process a popularissue
within the �eld of meteorology. Therefore, our related work covers several research
areas which will be discussed within this section. Furthermore, we will discuss the
basic image data material which is the basis of our classi�cation approach.

2.1 Classi�cation of General Weather Situations

The research area ofsynoptic scale meteorologymainly deals with the classi�ca-
tion of the GWSs. The European GWSs are subjectively classi�ed by considering
several characteristic features. Nevertheless, the used classi�cationis not arbitrary
but based on a history of experiences: The history of the European GWS classi�-
cation has started at the beginning of the 19th century with a simple classi�cation
of F. Baur with 21 GWS classes. This �rst classi�cation distinguished mainly be-
tween the geographical position of the prediction, the position of the active front
and the characteristic precipitation (cyclonic or anticyclonic). Later on, between
1946 and 1954, the synoptic scale meteorology rapidly developed, leadingto the
currently established classi�cation of Paul Hess and Helmuth Brezowsky [HB52].
This last classi�cation scheme was updated in subsequent works [HB77],[GW99]
and [WG09]. The number of considered features has increased and encompasses
now the distribution of the atmospheric pressure, the distribution of air massesor
certain boundaries of those air masses, as well as the trajectories of their move-
ments over the time. Additionally, considered features are the sunshine duration or
the amount of precipitation. The most actual classi�cation [GW99] distinguishes
29 classes of European GWS.

Similar classes are summarized in so-called General Weather Types (GWT)
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2.2 Properties of Weather Image Data2 RELATED WORK & BACKGROUND

distinguished by the main air �ow direction (east-west, north-south and so on), and
these GWTs are further distinguished by the kind of circulation: Altogether,there
is the zonal circulation (4 classes of European GWS), meridional circulation (18
classes of European GWS), and mixed circulation forms (7 classes of European
GWS). The classi�cation of European GWS strongly depends on �nding objec-
tive and reasonable features. Availability of such features and the ability of their
detection is a limiting factor in an objective classi�cation. In the next section we
describe the image data material used in this work in more detail. These will serve
as basis for the features which we will use for classi�cation of the main circulation
forms.

2.2 Properties of Weather Image Data

The underlying weather data for this work are image data. Figure 1 illustratesa
typical example of a weather image data annotated with its containing features: The
locations of the minima/maxima of a high/low pressure region are marked by “T”
and “H”, respectively. A dashed/drawn through curve marks an isolineof constant
air pressures (isobar), where the value of air pressure is given through a dedicated
number on the isoline. The direction of the wind or air �ow is approximately
parallel to these isobars [WG09]. The air pressure difference between adjacent
isolines is 4 hPa. In addition, for each image data the corresponding period of
time is given and the underlying geographic region (Europe) is presentedin the
background.

Besides those direct features, also some indirect features can be derived. The
underlying air �ow �eld is uniquely orientated because the direction of the air�ow
is counterclockwise for a low pressure region and clockwise for a high pressure
region, in the northern hemisphere. Moreover, the Coriolis force basedon the
rotation of the earth that refracts a straight air �ow, is already intrinsicly coded by
the behavior of the isolines.

From �uid dynamics it is known (cf. Bernoulli's principle) that the difference
within the local hydrostatic air pressurejÑpj (estimated by its gradient) is propor-
tional to the local velocityv of the underlying �uid (neglecting the friction and
compression-based density �uctuation):jÑpj � v. Due to that, the slope of the air
pressure between adjacent isobars is 4; it follows that the closer the isobars are to
each other, the larger the difference of the air pressure is. This enables us to esti-
matejÑpj, and further, we can also estimate the local air �ow velocity from this. In
other words: the density distribution of the isobars approximately codes the local
air �ow velocity.

We will use those features of the image data to generate an appropriate clas-
si�cation of GWS. The question follows how a classi�cation can be automatically
generated. The area of machine learning addresses this issue, as will bediscussed
in the next sections.
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Figure 1: Available image material for analyzing the classi�cation of weather data:
(up) exemplary weather image data showing differentGeneral Weather Situations,
(down) annotation of the general features within the image data.

Figure 2: Work�ow of the image data-based classi�cation.
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3 Our Approach

Figure 2 illustrates our work�ow for classi�cation of the weather maps. First, each
weather map has to be converted into a single �xed feature vector (Section 3.1).
These features are used as input for the SVM, and to ensure a properclassi�cation,
the vector components should represent essential attributes to differ the classes
(Section 3.2). In this step, the feature vectors are splitted into two disjoint sets: a
training set that is used to create the classi�cation model and a test set with unseen
examples to test the ef�ciency of the trained model.

3.1 Interactive Feature Extraction

This section describes the feature extraction of image data. The weather mapim-
ages used in this work were provided by specialists from theGerman Weather Ser-
viceand thePotsdam Institute for Climate Impact Research. Some of these maps
have a low resolution of 300� 226 pixel and due to the bad image quality (see
Figure 1) there are some handicaps for the feature extraction process:The pressure
values, represented by three integers numbers cannot not be precisely extracted.
The numbers are too small and in some cases illegible. Multiple digitalizations
from analog images caused a heavy quality loss. In other cases, pressure sym-
bols (Hs and Ts) cover each other. Thus, due to the resolution limitation of some
weather maps, we focus on rather sharp and clear features like isobars[PS07], the
alignment of the air �ow and the date of acquisition. Our approach automatically
derives the features from the image data.

An image function is given by

I (x;y) ! (r(x;y);g(x;y);b(x;y)) : N2 ! R3

whereasr;g;b 2 [0;1] 2 R are the three color channels of each pixelI (x;y) con-
cerning the 2D position(x;y)T 2 [0;xmax� 1] � [0;ymax� 1].

Interactive foreground extraction . The weather maps are composed of the
foreground (lines, numbers and pressure symbols) and an underlyingmap of Eu-
rope. The main focus is the foreground which has to be separated for further pro-
cessing. We provide a user interface to support the background subtraction in dif-
ferent kind of maps with different colors, scales and backgrounds. Figure 3 shows
an example of foreground extraction. First, the user selects the color of the isolines
(by picking it with the mouse) and then de�nes how large the lines are allowed
to be, de�ning theLine Widthin pixels. Finally, aTolerancecan be adjusted, to
include pixels with similar colors to the selected one in the foreground. Once we
have de�ned these parameters, they can be automatically used to process several
maps with the same properties. Figure 3(b) shows the �nal foreground for this
example.

In the next step, lines, numbers and symbols have to be extracted from the
binary map. Therefore pixel components have to be classi�ed into sets. A recursive
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3.1 Interactive Feature Extraction 3 OUR APPROACH

(a) (b)

Figure 3: Preparing the feature extraction by separating foreground:(a) Weather
map from DWD, (b) Computed foreground.

function can easily detect connected pixels to form a list of components. Due
to the bad resolution, features of different kinds might be contained in a single
group. This can happen to pressure symbols which are too close to line strips.
Afterwards the approach calculates the connected components for eachgroup of
adjacent pixels to prepare feature extraction. Figure 4 (a-b) illustrates this.

Figure 4: Preparing feature extraction by identifying components: (a) Example of
a binary image, (b) connected group of adjacent pixels.

Classi�cation of connected components Components can be classi�ed into tem-
plate symbols (symbol features, e.g., “H” and“T”), into numerical symbols (num-
ber features, e.g., “680”) or intoline featureslike dashed or solid lines.

Template symbols are detected by pixel masks which are grid-based template match-
ings [Bru09]. The mask is moved across each component and evaluated at all po-
sitions. Similar to convolution each position returns a value which represents the
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matching quality. If all source pixels �t into the pixel mask, there will be a match-
ing pattern at the current position. The� entry is an arbitary pixel which does not
affect the matching quality. Detection is getting more stable by using wildcards.
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The classi�cation ofnumber featuresis done by bounding boxes. All numbers
on a given weather map appear to have 3 digits and the same size. As the fontis
almost monospaced1, a bounding box can handle this kind of feature pretty well.
The numbers are embedded into the line strip of isobars. Therefore the orientation
is changing from place to place. To classify an arbitary component intonumber
features, a box of �xed size2 is rotated around the barycenter. With each iteration,
the anglea 2 [0;2p] is increased. If all pixels of the current component are inside
the box at a certain rotation, it might be a number feature. To improve the results
of this test, the pixels of the component should cover a certain percentage of the
corresponding box. About 70� 80% seems to be a good approximation of needed
pixel density innumber features.

Some of thenumber featuresare splitted into several components, e.g., when 3
digits are not connected (680 is separated into 68 and 0). Here we need tocombine
close components and have to repeat the test. Our approch fuses up to 2 compo-
nents to detect separatednumber features.

Based on this classi�cation we can separatesymbol featuresandnumbers features.
In the following we will explain the extraction of isolines, wind alignment �elds
and wind velocity �elds.

Isoline Reconstruction Let B(x;y)LF be the binary image, which only contains
those connected components that are classi�ed asline features. All the connected
components inB(x;y)LF correspond to isobars. Some of the isobars are unfortu-
nately presented as dashed lines (Figure 5 (a)). Therefore, the approach has to
reconstruct isolines by connecting dashes to solid lines.

Common approaches to detect dashed lines by applying morphological opera-
tions [BBE07] have a lack in line density. As soon as the fragments of different
lines are too close and in parallel order, these operations start melting fragments.
Therefore, a more sophisticated approach is needed.

1Font which is having a �xed width for each character
2The size of box is based on our experience with the weather image data.
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At �rst the fragments of the dashed lines are distinguished from the solid lines.
In general dashes have a rather small number of pixels, therefore we can classify
them as “dots”, which have a number of pixelsl � ldot with ldot is the 10% quantile
of the histogramH(l (S(x;y)LF )) given by:

ldot :=
Z ldot

0
H(l (S(x;y)LF )) dl = 0:1:

Figure 5 (b) illustrates this. For practical reasons an appropriate approximation of
ldot is given by:ldot = lmax� 0:05.

For each line fragment the topological skeleton [GW01] is computed which repre-
sents the further alignment (principal component) of the fragment. To determine if
two fragments can be connected, the facing endpoints of their skeletons are com-
pared. Each endpoint has a direction vector based on the remaining skeleton point-
ing outside. The angle between the facing vectors is a metric for the connection
quality of a pair of endpoints. Sequenced fragments of the same line are having
small angles. Fragments which do not belong to the same line have a greater value.
With this angle we can �nd partners and their connection quality in the surround-
ing neighbourhood. They are only combined if both fragments will appoint each
other as best candidates by not exceeding the metric. This process is repeated by
decreasing the threshold for the best candidate. At �rst, the fragments have to point
to each other without any tolerance. By increasing the tolerance, more andmore
fragments are combined forming proper line strips. It is important to increasethe
tolerance of admissible candidates slowly to avoid parallel connection of different
lines.

Figure 5: Isobar reconstruction: (a) example of binary imageS(x;y)LF with (b)
classi�ed dots and solid lines.

Wind Alignment Field Another feature which is important for the classi�cation
of general weather situations is the principle alignment of the air �ow. The air
alignment �eld f(x;y) = ( u(x;y);v(x;y))T : R2 ! R2 is a certain vector and �ow
�eld, respectively. For the reconstructed isobarsS(x;y)LF , our algorithm approxi-
mates the gradientÑSLF by a convolution based on the Sobel operator [KS11]Gx
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andGy:

ÑSLF =
�

S(x;y)LF=¶x
S(x;y)LF=¶y

�
=

�
Gx � S(x;y)LF

Gy � S(x;y)LF

�
;

with Gx = GT
y andGy =

1
8

0

@
1 2 1
0 0 0

� 1 � 2 � 1

1

A :

For each pixel(xp;yp)T , which is on an isobars inS(x;y)LF , the normalized air
alignment �eld f(xp;yp) = ( u(xp;yp);v(xp;yp))T is given by:

f =
�

cos(tan� 1(b ))
sin(tan� 1(b ))

�
;b =

8
><

>:

S(xp;yp)LF =¶y
S(xp;yp)LF =¶x;S(xp;yp)LF=¶x 6= 0
p
2 ;S(xp;yp)LF=¶x;S(xp;yp)LF=¶y = 0

0; else

:

For all pixels (or sub-pixels) which are not on the isobars inS(x;y)LF , the air
�ow �eld f(x;y) is calculated by a Shepard-Interpolation[She68] based on the air
alignment �eld f(xp;yp) for pixels on the isobars:

f =
�

u(x;y)
v(x;y)

�
=

0

B
@

å n
i= 1

((x� xpi )
2+( y� ypi )

2)� 1

å n
j= 1((x� xpj )

2+( y� ypj )
2)� 1 � u(xpi ;ypi )

å n
i= 1

((x� xpi )
2+( y� ypi )

2)� 1

å n
j= 1((x� xpj )

2+( y� ypj )
2)� 1 � v(xpi ;ypi )

1

C
A ;

with n being the number of pixels on the isobars (cf. Figure 6).

Air Velocity Field: As discussed in Section 2.2, hydrostatic pressure and air
velocity are directly caused and related(under reasonable assumption) by the same
effect: the mass conservation of �uid mechanics. Therefore there are actually two
possibilities to use the air pressure information and the gradient of the air pressure,
respectively. The approach either reconstructs the pressure scalar�eld, similar to
[HSS03], or the air velocity scalar �eld. Using both possibilities as feature isnot
reasonable, because they have different aspects of the same information and are
consequently redundant.

We decided to use the approach that reconstructs the air velocity �eld because
this can be done very quickly and ef�ciently. The air velocity �eldv(x;y) : R2 ! R
is a scalar �eld of the local velocity air �ow.

As already mentioned in Section 2.2, the density distribution of the isobars
represents the local air �ow velocity. Therefore, the approach estimatesthe corre-
sponding density distributionv(x;y) via an iteratively applied convolution with a
GaussianGs convolution kernel [HA91] to isobars ofS(x;y)LF :

v(x;y) = Gs � S(x;y)LF ; with Gs (m;n) =
1

2ps 2e� m2+ n2

2s 2

The idea is to interpret the isobars themselves as density functions with a density
of 1 and to blur the density into the neighbourhood so that regions with many
isobars have a larger density in average (= velocity) than other regions.Figure 6
summarizes the feature extraction results.
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Figure 6: Results of the automatic feature extraction from the weather image data:
(a) original image data, (b) reconstructed air �ow �eld (color codedu(x;y)/v(x;y)
is the red/green channel), (c) air �ow �eld with reconstructed isobars, (d) air �ow
�eld (vector �eld illustration), (e) air �ow �eld (vector �eld illustration) with iso-
bars, (f) air velocity �eld (color coded).

3.2 Feature-based Classi�cation of GWS

Once we have reconstructed an approximation of the weather maps, one ofthe
most challenging issues in the weather map classi�cation is the decision of which
set of features should be used to represent the maps. According to the catalog
of the General Weather Situations of Europeproposed by Hess and Brezowsky
[HB77], there are main subjective features that are used to manually classify the
circulation forms (zonal, meridional or mixed). The zonal circulation form, e.g., is
characterized by a subtropical high-pressure region over the North Atlantic and a
system of low pressure in the subpolar area, creating a rather straight west-to-east
�ow between them, where single low-pressure regions move with their front-line
from west to east, i.e. from the eastern part of the North Atlantic to the European
continent. On the other side, the meridional circulation form can be characterized
by an existence of stationary and blocking high-pressure regions between 50 and
65 degrees of northern latitude. Also, depressions with north-south axisdirection
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3.2 Feature-based Classi�cation of GWS 3 OUR APPROACH

are considered to be of this circulation form. In a mixed circulation the zonal
and meridional wind components have almost the same proportion. Based on this
information, our vector feature is composed by: the month (from 1 to 12) on which
the map was created, the wind direction and magnitude in main regions of the
map. These main regions of the map are de�ned by a grid. We concentrate in
the central region of the image and discard the four corners of the image because
they do not have impact on the results. The size of the feature vector depends
on the grid resolution. By subdividing each region the classi�cation error can be
in�uenced. We evaluated our classi�cation framework the same set of weather
maps with different subdivisions and different vector con�gurations (see Figure
7). The horizontal axis describes how many subdivisions were done onthe central
region of the map and the vertical axis depicts the classi�cation error. Figure 8
shows three examples of grid resolution that can be used. Figure 8 (a) shows a
grid with only 1, (b) with 2 and (c) with 5 subdivisions.

Figure 7: Different grid tilings and vector con�gurations and the associated error
rate. Con�g1 considers the variance. Con�g2 does not consider the variance.

The best results were delivered by not using the variance (Con�g2) and the
resolution schema represented in Figure 8(c) , i.e. 5 subdivisions. With a feature
vector containing 40 wind elements that are computed per grid cell as the mean of
the 90% quantile of all pixels in the cell for each wind component (x and y). These
wind components are de�ned by the direction (see Figure 6(d)) increased by the
wind magnitude (see Figure 6(f)).

The last step of our framework is the �nal classi�cation which assigns oneof
the de�ned labels to the feature vectors. As aforementioned, we categorize the
weather maps in three different classes, i.e., the circulation forms. We adopted a
classi�cation approach that follows a geometric approach based on decision bound-
aries. We use a multiclass extension of the Support Vector Machine [CS02](SVM)
in order to categorize the selected features. The original SVM proposedby Vap-
nik [Vap98] supported only binary decisions, it was later extended to a multilabel
variant by Crammer and Singer [CS02]. This multiclass approach can be used in
cases where more than two classes are de�ned. We use this extension to train our
classi�er for the three circulation forms. After a short training period, a prediction
model is created and can be used to predict the class of new unseen weather maps.
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4 RESULTS

(a) (b) (c)

Figure 8: Different resolutions of the grid to compute the wind features. The
scheme represented in (c) delivered the best results.

The used training and test sets are described in detail in Section 4.

4 Results

For our classi�cation approach, 603 weather image maps were available. Alto-
gether, these maps describe the European GWS over the time period from January
2002 to December 2010. To validate our classi�cation framework, we partitioned
the maps into two distinct sets. We used 423 (70 %) images as training set and 180
(30 %) as test set. The classes in the training and test set are not well distributed
and only a low number of examples of theZonalclass was available in both sets.
For the training set e.g., theZonal, MixedandMeridional classes had 68, 178 and
176 samples, respectively. Similarly, for the test set, each of the classes have 34,
68 and 78 samples, respectively.

Using the features described in Section 3.2 and in Figure 8(c), our classi�ca-
tion framework achieved an overall classi�cation success of 61.67% for the test
set and the three classes. This result is far from a random selection of 33.33%
for three classes. The individual results per class can be seen in Table1. Note
that theZonal class presented a very low percentage of correctness in the classi-
�cation of 17.65%, while the other two classesMixed andMeridional presented
much better results: 61.76% and 80.77% of the samples were correctly classi�ed.
The low classi�cation rate for theZonalclass may occur because the Zonal class
was underrepresented in the training set, with only 68 samples, i.e., 15% of the
total samples. Therefore, not all possible con�gurations for theZonal class are
represented in training set. However, most misclassi�ed samples fromZonaland
Meridionalclasses were categorized asMixed. This result is quite intuitive because
theMixedcirculation form has elements of the other both (ZonalandMeridional).
In this case the misclassi�cation is not a serious failure because a map classi�ed as
Mixedcan be further evaluated by weather specialists in a interactive process.

Figure 9 shows examples of weather maps that belong to the three different
categories. In the �rst column are examples of the training set for the threeclasses,
in the second are examples of the test set that were successfully classi�ed by our
framework, while the last column presents examples of the test set that weremis-
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4 RESULTS

classi�ed. Note that the visual classi�cation of such maps in GWS is not trivial
and can be very dif�cult for non-specialists.

Table 1: Classi�cation Results
Classes Zonal Mixed Meridional

Zonal 17.65% 52.94% 29.41%
Mixed 4.41% 61.76% 33.82%

Meridional 12.83% 17.95% 80.77%

(a) Zonal(training) (b) Zonal(correct) (c) Zonal(wrong)

(d) Mixed(training) (e) Mixed(correct) (f) Mixed(wrong)

(g) Merid. (training) (h) Merid. (correct) (i) Merid. (wrong)

Figure 9: Examples of weather maps from our data sets. The �rst column (a, d
and g) shows examples of the training set for the three distinct classes, thesecond
column shows examples of the test set that were successfully classi�ed and the last
column presents examples of the test set that were misclassi�ed. (c) is known as
Zonalbut was classi�ed asMeridional, (f) is known asMixedbut was classi�ed as
Meridionaland (i) is known asMeridionalbut was classi�ed asZonal.

As aforementioned, the proposed framework supports several map formats.
Figure 10 shows an example with a different map type. This second type is similar
to the �rst one, with a different background and a better resolution of 640� 472.
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The two maps belong to theMeridional circulation form and were correctly clas-
si�ed by our system. Figures 10 (a) and (b) show the original maps and Figures 10
(c) and (d) the respective air �ow �elds.

(a) (b)

(c) (d)

Figure 10: Classi�cation example with different maps. Both maps belong to the
Meridional circulation form and were correctly classi�ed by our system. (a) and
(b) show the original maps and Figures 10 (c) and (d) the respective air�ow �elds.

5 Conclusion

In this work, we proposed a classi�cation framework to support the categoriza-
tion of weather maps in General Weather Situations (GWS). To the best of our
knowledge, this is the �rst work that establishes a work�ow for such taskonly
based on weather map images. Our framework brings together established tech-
niques used in the area of visualization and image processing and machine learn-
ing. We describe a set of features from weather map images that are relevant for
this classi�cation according to the Hess and Brezowsky main circulations forms,
and we present a plausible method for the extraction of these features. Moreover,
we trained a classi�cation model using support vector machines to validate our fea-
tures. In our �rst experiments we were able to classify weather maps in the three
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5 CONCLUSION

pre-de�ned circulation forms with an overall accuracy rate of 61% percent. Our
classi�cation results can be used as a pre-categorization to guide the �nalclassi�-
cation by weather specialists.

As future work we intent to test our framework with other feature sets and
larger data sets to improve its classi�cation rate. A larger number of training sam-
ples, mainly for the Zonal class can signi�cantly improve the results. Moreover,
based on this extended training set, we intent to classify not only the circulation
forms, but also the different 29 possibleEuropean General Weather Situations.
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