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Abstract

In this paper we analyze weather maps to distinguish between the three main cir-
culation forms which are essential factors for weather composition arfdradla-
mental for weather forecasters. We propose a set of features spligtailored for

the classi cation of these circulation forms eeneral Weather Situatiorend use
these to train a support vector machine for classi cation. Additionally, vepgse

a semi-automatic algorithm to extract the necessary data directly from theawveath
maps itself. This enables us to also analyze historic map material for which the
original data is not available anymore. In order to reconstruct the wedtia,

we extract and analyze the isolines from the weather maps based onmblorea
thickness as well as symbolic and numerical features using template matcling tec
niques. We reconstruct the dense wind alignment eld and air velocity eddhf
these sparse data and extract expressive feature vectors to cthssffsesented
main circulation forms. Our algorithm shows an overall classi cation s ca®

of 61% for the three main circulation forms zonal, meridional and mixed.



1 INTRODUCTION

1 Introduction

The circulation patterns of the atmosphere are an essential factor in weatingo-
sition and are fundamental for weather forecasters. Surface amd appveather
maps depicting positions for high and low pressure regions deliver agmmx-
imation of the circulation. These maps are de ned over a geographicalnred

a speci ed time, based on information from weather stations. For weatleer pr
dictions, they help to classify the atmospheric stat&éameral Weather Situations
(GWS). F. Baur describes GWS as the average distribution of air pecesar a
large region (at least the size of Europe) [WG09]. Thédather Situationsan

be subdivided into three main circulation forms, e.g. in Europe: zonal, mes&tio
and mixed.

The decision of whichNVeather Situatiomprevails in the atmosphere is made
by specialists that analyze the maps at different days (at least 3 daythevdame
patterns). A necessity for the classi cation is the knowledge of the air leircu
tion in the atmosphere. The upper air weather maps depict positions forrnigh a
low pressure regions from which the circulation needs to be derivedeSarlier
approached [Lun63, MSB5] classify weather situations by automaticaliynde
a set of criteria or features. However, despite their automatism, the clageinc
using the automatically extracted features might dissent from the subjepiive o
ion of the specialist. In the work of Jamesal. [JamQ7] a hybrid approach was
therefore proposed which combined a manual feature selection with actiobje
classi cation scheme. Unfortunately, classi cation is only one part of tiabfem
when analyzing weather maps. In the case of historic map material the agcess
data needs to be reconstructed rst. None of the aforementioned teelsnigjable
to provide automatic classi cation of the circulation forms from the weather maps
itself.

We propose to use a semi-automatic approach to reconstruct air circulation in
formation from upper air weather maps to classify GWS. Our main idea is to rst
interactively extract the air pressure isolines from the weather maps. |d&mp
matching extracts the symbolic features, e.g. the high and low air pressaks, pe
denoted by “H” and “T” respectively in Figuig 2, as well as the numersyan-
bols depicting the absolute value of air pressure along the line. We regcinatr
dense wind alignment eld and air velocity eld and extract an optimized featur
descriptor from these which in turn is used for supervised training ofpp®tl
vector machine (SVM). This way the subjective knowledge of the specigilist
corporated opposed to using only objective features from the data.

Our approach can support meteorologists to understand the weatlerdwgh
on large scales. Standard weather or distribution forecasts are soneayph-
cations. Regarding accidents like the destruction of the Fukushima powey pla
in Japan 2011, the GWS in such regions can steer in large scale how @oradia
plume distributes in the atmosphere. Furthermore, for climate researclgeshan
in long-term GWS are an important driver/indicator of regional climatic cbang
and support the understanding of local trends (e.g. of changes in rtatm@eor



2 RELATED WORK & BACKGROUND

precipitation patterns). In such cases, the correct classi cation ofithelation
form in GWS is of highest priority.

Additionally, our interactive reconstruction of air pressure from mapdf itse
is bene cial to classify the weather situations in historic map material for which
the original data is lost. The reconstructed information can then be useatr
mining of weather data archives, e.g. to compare current conspiciogtetations
with similar situations and their outcome in the past.

In the rest of the paper we describe our algorithm in gradual stepsr kfte
viewing previous work in Sectidd 2, we explain our classi cation appraac®ec-
tion[3, including our feature extraction and reconstruction of the wind aligmme
and air velocity eld, Sectiof_3]1, as well as our optimized feature descratdr
SVM classi er, Sectiori 3]2. Sectidd 4 conveys an analysis and discus&iour
classi cation results. We conclude in Sect[dn 5 with a summary and give agces
tive outlook on future work.

2 Related Work & Background

In this interdisciplinary work, we combine techniques from the eld of visualiz
tion, image processing, and machine learning in order to process a pagaular
within the eld of meteorology. Therefore, our related work covers sawesearch

areas which will be discussed within this section. Furthermore, we will disithies

basic image data material which is the basis of our classi cation approach.

2.1 Classi cation of General Weather Situations

The research area ef/noptic scale meteorologyainly deals with the classi ca-
tion of the GWSs. The European GWSs are subjectively classi ed byideriisg
several characteristic features. Nevertheless, the used classi atioharbitrary
but based on a history of experiences: The history of the Europea8 G&¥¢si -
cation has started at the beginning of thg,X®ntury with a simple classi cation
of F. Baur with 21 GWS classes. This rst classi cation distinguished mairdy b
tween the geographical position of the prediction, the position of the actw f
and the characteristic precipitation (cyclonic or anticyclonic). Later otwdwen
1946 and 1954, the synoptic scale meteorology rapidly developed, letadihg
currently established classi cation of Paul Hess and Helmuth BrezowsB%2].
This last classi cation scheme was updated in subsequent works [HBXYDS]
and [WGO09]. The number of considered features has increasechanthpasses
now the distribution of the atmospheric pressure, the distribution of air masses
certain boundaries of those air masses, as well as the trajectories of thveiyr mo
ments over the time. Additionally, considered features are the sunshirt@dwa
the amount of precipitation. The most actual classi cation [GW99] distingsgsh
29 classes of European GWS.

Similar classes are summarized in so-called General Weather Types (GWT)
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distinguished by the main air ow direction (east-west, north-south and y@od
these GWTs are further distinguished by the kind of circulation: Altogetherg

is the zonal circulation (4 classes of European GWS), meridional circal§ti®
classes of European GWS), and mixed circulation forms (7 classes op&am
GWS). The classi cation of European GWS strongly depends on ndibhgpo

tive and reasonable features. Availability of such features and the aHilihem
detection is a limiting factor in an objective classi cation. In the next section we
describe the image data material used in this work in more detail. These will serve
as basis for the features which we will use for classi cation of the main Izitimn
forms.

2.2 Properties of Weather Image Data

The underlying weather data for this work are image data. Figure 1 illustmates
typical example of a weather image data annotated with its containing featimes: T
locations of the minima/maxima of a high/low pressure region are marked by “T”
and “H”, respectively. A dashed/drawn through curve marks an isolfimenstant

air pressures (isobar), where the value of air pressure is giveaghr@ dedicated
number on the isoline. The direction of the wind or air ow is approximately
parallel to these isobars [WG09]. The air pressure difference batadgcent
isolines is 4 hPa. In addition, for each image data the corresponding pdriod o
time is given and the underlying geographic region (Europe) is preséamtibe
background.

Besides those direct features, also some indirect features can bedderhe
underlying air ow eld is uniquely orientated because the direction of theair
is counterclockwise for a low pressure region and clockwise for a highspire
region, in the northern hemisphere. Moreover, the Coriolis force bagetthe
rotation of the earth that refracts a straight air ow, is already intrinsiclyecbbly
the behavior of the isolines.

From uid dynamics it is known (cf. Bernoulli's principle) that the differem
within the local hydrostatic air pressujfépj (estimated by its gradient) is propor-
tional to the local velocity of the underlying uid (neglecting the friction and
compression-based density uctuatioffilpj v. Due to that, the slope of the air
pressure between adjacent isobars is 4; it follows that the closer tressate to
each other, the larger the difference of the air pressure is. This snable esti-
matejN pj, and further, we can also estimate the local air ow velocity from this. In
other words: the density distribution of the isobars approximately codesdhE lo
air ow velocity.

We will use those features of the image data to generate an appropriate clas-
si cation of GWS. The question follows how a classi cation can be automatically
generated. The area of machine learning addresses this issue, asdisitiresed
in the next sections.
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Figure 1: Available image material for analyzing the classi cation of weathéa:d
(up) exemplary weather image data showing diffe@aneral Weather Situations
(down) annotation of the general features within the image data.
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Figure 2: Work ow of the image data-based classi cation.
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3 Our Approach

Figure 2 illustrates our work ow for classi cation of the weather maps. fiesach
weather map has to be converted into a single xed feature vector (Sectipn 3
These features are used as input for the SVM, and to ensure a pfag&rcation,
the vector components should represent essential attributes to diffelases
(Section 3.2). In this step, the feature vectors are splitted into two disjointasets
training set that is used to create the classi cation model and a test set wgitlenin
examples to test the ef ciency of the trained model.

3.1 Interactive Feature Extraction

This section describes the feature extraction of image data. The weathémmap
ages used in this work were provided by specialists fronizbenan Weather Ser-
vice and thePotsdam Institute for Climate Impact Resear8ome of these maps
have a low resolution of 300 226 pixel and due to the bad image quality (see
Figure 1) there are some handicaps for the feature extraction prddespressure
values, represented by three integers humbers cannot not be lyresisacted.
The numbers are too small and in some cases illegible. Multiple digitalizations
from analog images caused a heavy quality loss. In other cases, nereyso-
bols (Hs and Ts) cover each other. Thus, due to the resolution limitatiomo# so
weather maps, we focus on rather sharp and clear features like i$B8&%8], the
alignment of the air ow and the date of acquisition. Our approach automatically
derives the features from the image data.

An image function is given by

106y) ! (r(y)ig(xy)ib(xy) :N?1 R

whereas;g;b 2 [0;1] 2 R are the three color channels of each pikety) con-
cerning the 2D positiofx;y) " 2 [0;Xmax 1]  [0;Ymax 1].

Interactive foreground extraction . The weather maps are composed of the
foreground (lines, numbers and pressure symbols) and an undemgpgf Eu-
rope. The main focus is the foreground which has to be separated-fioerfyro-
cessing. We provide a user interface to support the backgroundhstibir in dif-
ferent kind of maps with different colors, scales and backgrounigsir& 3 shows
an example of foreground extraction. First, the user selects the colar Edlines
(by picking it with the mouse) and then de nes how large the lines are allowed
to be, de ning theLine Widthin pixels. Finally, aTolerancecan be adjusted, to
include pixels with similar colors to the selected one in the foreground. Once we
have de ned these parameters, they can be automatically used to prevess s
maps with the same properties. Figure 3(b) shows the nal foregrounthi®
example.

In the next step, lines, numbers and symbols have to be extracted from the
binary map. Therefore pixel components have to be classi ed into seecusive

6
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(@) (b)

Figure 3: Preparing the feature extraction by separating foregro@ydiVeather
map from DWD, (b) Computed foreground.

function can easily detect connected pixels to form a list of component® Du
to the bad resolution, features of different kinds might be contained inghesin
group. This can happen to pressure symbols which are too close to ling strip
Afterwards the approach calculates the connected components fogeagh of
adjacent pixels to prepare feature extraction. Figure 4 (a-b) illustrages th

Figure 4: Preparing feature extraction by identifying components: (ajripie of
a binary image, (b) connected group of adjacent pixels.

Classi cation of connected components Components can be classi ed into tem-
plate symbolsgymbol featurese.g., “H” and“T"), into numerical symbolsum-
ber featurese.g., “680") or intoline featuredike dashed or solid lines.

Template symbols are detected by pixel masks which are grid-based template matc

ings [Bru09]. The mask is moved across each component and evaluaitga
sitions. Similar to convolution each position returns a value which represents th

7
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matching quality. If all source pixels tinto the pixel mask, there will be a match-
ing pattern at the current position. Theentry is an arbitary pixel which does not
affect the matching quality. Detection is getting more stable by using wildcards.

0 1 0 1
11111 1 0 0 0 1
0 1 0 1 1

%8 1 0 %}1 1 1 1

1 1 1
0 1 0 1 0 0 0 1

The classi cation ofnumber featuress done by bounding boxes. All numbers
on a given weather map appear to have 3 digits and the same size. As tie font
almost monospacéda bounding box can handle this kind of feature pretty well.
The numbers are embedded into the line strip of isobars. Therefore tihéatina

is changing from place to place. To classify an arbitary componentiatober
features a box of xed sizé is rotated around the barycenter. With each iteration,
the anglea 2 [0;2p] is increased. If all pixels of the current component are inside
the box at a certain rotation, it might be a number feature. To improve thiksresu
of this test, the pixels of the component should cover a certain perceritéige o
corresponding box. About 7080% seems to be a good approximation of needed
pixel density innumber features

Some of thenumber featuresre splitted into several components, e.g., when 3
digits are not connected (680 is separated into 68 and 0). Here we nemuline
close components and have to repeat the test. Our approch fuses uprtp@-c
nents to detect separatedmber features

Based on this classi cation we can separsgenbol featureandnumbers features
In the following we will explain the extraction of isolines, wind alignment elds
and wind velocity elds.

Isoline Reconstruction Let B(x;y).r be the binary image, which only contains
those connected components that are classi elihasfeatures All the connected
components iB(x;y)_r correspond to isobars. Some of the isobars are unfortu-
nately presented as dashed lines (Figure 5 (a)). Therefore, theaapphas to
reconstruct isolines by connecting dashes to solid lines.

Common approaches to detect dashed lines by applying morphological- oper
tions [BBEOQ7] have a lack in line density. As soon as the fragments of differ
lines are too close and in parallel order, these operations start meltingefras;
Therefore, a more sophisticated approach is needed.

1Font which is having a xed width for each character
2The size of box is based on our experience with the weather image data.



3.1 Interactive Feature Extraction 3 OUR APPROACH

At rst the fragments of the dashed lines are distinguished from the solid.line
In general dashes have a rather small number of pixels, thereforameassify
them as “dots”, which have a number of pixels lgq: With 14t is the 10% quantile
of the histogranH (I(S(x;y)Lr)) given by:

Zldot
lgot := . H((S(xy)LF)) dl = O:1:

Figure 5 (b) illustrates this. For practical reasons an appropriate dppaton of
lqot IS given by:lgot = Imax 0:05.

For each line fragment the topological skeleton [GWO01] is computed whjmie+e
sents the further alignment (principal component) of the fragment. Tordeteif

two fragments can be connected, the facing endpoints of their skele®osrar
pared. Each endpoint has a direction vector based on the remainintpaksbént-

ing outside. The angle between the facing vectors is a metric for the conmectio
quality of a pair of endpoints. Sequenced fragments of the same line argghav
small angles. Fragments which do not belong to the same line have a gréager va
With this angle we can nd partners and their connection quality in the sud-oun
ing neighbourhood. They are only combined if both fragments will app@iohe
other as best candidates by not exceeding the metric. This processasee by
decreasing the threshold for the best candidate. At rst, the fragmeméstb point

to each other without any tolerance. By increasing the tolerance, momnairel
fragments are combined forming proper line strips. It is important to incibase
tolerance of admissible candidates slowly to avoid parallel connection efetift
lines.

Figure 5: Isobar reconstruction: (a) example of binary im8gey) s with (b)
classi ed dots and solid lines.

Wind Alignment Field  Another feature which is important for the classi cation
of general weather situations is the principle alignment of the air ow. The air
alignment eldf(x;y) = (u(x;y);v(x;y)) T : R?! R?is a certain vector and ow
eld, respectively. For the reconstructed isob&s;y),_r, our algorithm approxi-
mates the gradiemiS r by a convolution based on the Sobel operator [KSG]
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andGy:
SGY)LE=TX _  Gx SXY)LF

NSk = =
ST Sy)e=ty o & SN,
. 1 2 1
with G = Gy andGy= @0 0  0A:
1 2 1

For each pixel(xp;yp)T, which is on an isobars i&(X;y).r, the normalized air
alignment eldf(Xxp;yp) = ( u(xp;yp);v(xp;yp))T is given by:

8 oy v o
DR SXp: Yp)LF=TX 6 O

2 Dxpiyp)Lr =X

cogtan (b)) ., _ pYp)LF

sin(tan (b)) b= B S(Xpi Yp)Lr=1% S(Xp; Yp)Le=Ty = O
" 0; else

For all pixels (or sub-pixels) which are not on the isobar§(xy), r, the air
ow eld f(x;y) is calculated by a Shepard-Interpolati@he6§ based on the air
alignment eldf(xp;yp) for pixels on the isobars:

0
0 ((x xp)*+(y yp)?) ! )
_oouxy) _ %ainﬂa?zl((xpxp-)2+(ypyp,-)2) T U0 Yn)

VI X o ((X Xi) +(y yi)2 ! . ,
bs) AL ETL(x 7oy v 1 V00 Y)

1

with n being the number of pixels on the isobars (cf. Figure 6).

Air Velocity Field: As discussed in Section 2.2, hydrostatic pressure and air
velocity are directly caused and related(under reasonable assumptith®) €ame
effect: the mass conservation of uid mechanics. Therefore therecamally two
possibilities to use the air pressure information and the gradient of the agypeg
respectively. The approach either reconstructs the pressure std|aimilar to
[HSSO03], or the air velocity scalar eld. Using both possibilities as featureis
reasonable, because they have different aspects of the same inforieadiare
consequently redundant.

We decided to use the approach that reconstructs the air velocity eldibeca
this can be done very quickly and ef ciently. The air velocity elk;y) : R?! R
is a scalar eld of the local velocity air ow.

As already mentioned in Section 2.2, the density distribution of the isobars
represents the local air ow velocity. Therefore, the approach estintlagesorre-
sponding density distributiom(x;y) via an iteratively applied convolution with a
GaussiarGs convolution kernel [HA91] to isobars &(X;y)LF:

2+ 2
e 252

V(Xy)= Gs S(XY)LF; with Gs(m;n) = 2557

The idea is to interpret the isobars themselves as density functions withitydens
of 1 and to blur the density into the neighbourhood so that regions with many
isobars have a larger density in average (= velocity) than other regiogsre 6
summarizes the feature extraction results.

10
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Figure 6: Results of the automatic feature extraction from the weather imémge da
(a) original image data, (b) reconstructed air ow eld (color codgdt; y)/v(X;y)

is the red/green channel), (c) air ow eld with reconstructed isobad¥ afr ow

eld (vector eld illustration), (e) air ow eld (vector eld illustration) with iso-
bars, (f) air velocity eld (color coded).

3.2 Feature-based Classi cation of GWS

Once we have reconstructed an approximation of the weather maps, ¢ne of
most challenging issues in the weather map classi cation is the decision of which
set of features should be used to represent the maps. According tattiegc
of the General Weather Situations of Europeoposed by Hess and Brezowsky
[HB77], there are main subjective features that are used to manuallyfy ltes
circulation forms (zonal, meridional or mixed). The zonal circulation form,,&s
characterized by a subtropical high-pressure region over the Ndldht& and a
system of low pressure in the subpolar area, creating a rather straightaveast
ow between them, where single low-pressure regions move with their finat-
from west to east, i.e. from the eastern part of the North Atlantic to the Earop
continent. On the other side, the meridional circulation form can be chamscte
by an existence of stationary and blocking high-pressure regions @&ets@and
65 degrees of northern latitude. Also, depressions with north-souttds&igion

11
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are considered to be of this circulation form. In a mixed circulation the zonal
and meridional wind components have almost the same proportion. Baseid on th
information, our vector feature is composed by: the month (from 1 to 12)echw

the map was created, the wind direction and magnitude in main regions of the
map. These main regions of the map are de ned by a grid. We concentrate in
the central region of the image and discard the four corners of the image s
they do not have impact on the results. The size of the feature vectondiepe
on the grid resolution. By subdividing each region the classi cation erapr lwe

in uenced. We evaluated our classi cation framework the same set othveea
maps with different subdivisions and different vector con guratioree(§igure

7). The horizontal axis describes how many subdivisions were dotfgearentral
region of the map and the vertical axis depicts the classi cation error. &idhr
shows three examples of grid resolution that can be used. Figure 8o} sh

grid with only 1, (b) with 2 and (c) with 5 subdivisions.

Figure 7: Different grid tilings and vector con gurations and the asgedi&rror
rate. Con g1 considers the variance. Con g2 does not consider dhiance.

The best results were delivered by not using the variance (Con ga)the
resolution schema represented in Figure 8(c) , i.e. 5 subdivisions. Withtaré
vector containing 40 wind elements that are computed per grid cell as the hean o
the 90% quantile of all pixels in the cell for each wind component (x and lggsé
wind components are de ned by the direction (see Figure 6(d)) inctuelagehe
wind magnitude (see Figure 6(f)).

The last step of our framework is the nal classi cation which assigns ahe
the de ned labels to the feature vectors. As aforementioned, we categbez
weather maps in three different classes, i.e., the circulation forms. Weeadap
classi cation approach that follows a geometric approach based oriaebisund-
aries. We use a multiclass extension of the Support Vector Machine [GSUR])
in order to categorize the selected features. The original SVM profns&dp-
nik [Vap98] supported only binary decisions, it was later extended to a nidtila
variant by Crammer and Singer [CS02]. This multiclass approach candokeins
cases where more than two classes are de ned. We use this extensian twtra
classi er for the three circulation forms. After a short training periodredgction
model is created and can be used to predict the class of new unseeewsafis.

12
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(@) (b) (©

Figure 8: Different resolutions of the grid to compute the wind featurese Th
scheme represented in (c) delivered the best results.

The used training and test sets are described in detail in Section 4.

4 Results

For our classi cation approach, 603 weather image maps were availalite- A
gether, these maps describe the European GWS over the time period froanda
2002 to December 2010. To validate our classi cation framework, we parétio
the maps into two distinct sets. We used 423 (70 %) images as training set@nd 18
(30 %) as test set. The classes in the training and test set are not wébutéestr
and only a low number of examples of tAenal class was available in both sets.
For the training set e.g., th®onal Mixed andMeridional classes had 68, 178 and
176 samples, respectively. Similarly, for the test set, each of the clasges34,
68 and 78 samples, respectively.
Using the features described in Section 3.2 and in Figure 8(c), our atassi
tion framework achieved an overall classi cation success of 61.67% m®itdht
set and the three classes. This result is far from a random selectidh 3898
for three classes. The individual results per class can be seen in TaNete
that theZonal class presented a very low percentage of correctness in the classi-
cation of 17.65%, while the other two classt4ixed and Meridional presented
much better results: 61.76% and 80.77% of the samples were correctly elhssi
The low classi cation rate for th&onal class may occur because the Zonal class
was underrepresented in the training set, with only 68 samples, i.e., 15% of the
total samples. Therefore, not all possible con gurations for Zb@al class are
represented in training set. However, most misclassi ed samples Zmmal and
Meridionalclasses were categorizedMixed This result is quite intuitive because
theMixedcirculation form has elements of the other bafloialandMeridional).
In this case the misclassi cation is not a serious failure because a map eldss
Mixed can be further evaluated by weather specialists in a interactive process.
Figure 9 shows examples of weather maps that belong to the three different
categories. Inthe rst column are examples of the training set for the tiasses,
in the second are examples of the test set that were successfully othbygi @ur
framework, while the last column presents examples of the test set thamigere

13
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classi ed. Note that the visual classi cation of such maps in GWS is not trivia
and can be very dif cult for non-specialists.

Table 1: Classi cation Results
Classes Zonal Mixed  Meridional

Zonal 17.65% 52.94%  29.41%

Mixed 441% @ 61.76%  33.82%
Meridional | 12.83% 17.95%  80.77%

(a) Zonal(training) (b) Zonal(correct) (c) Zonal(wrong)
(d) Mixed (training) (e) Mixed (correct) (f) Mixed (wrong)
(g) Merid. (training) (h) Merid. (correct) (i) Merid. (wrong)

Figure 9: Examples of weather maps from our data sets. The rst colummh (a
and g) shows examples of the training set for the three distinct classegdbed
column shows examples of the test set that were successfully classodtiarast
column presents examples of the test set that were misclassi ed. (c) iskasw
Zonalbut was classi ed aMeridional, (f) is known asMixedbut was classi ed as
Meridionaland (i) is known ad/eridional but was classi ed agonal

As aforementioned, the proposed framework supports several magatior
Figure 10 shows an example with a different map type. This second type isrsimila
to the rst one, with a different background and a better resolution 6f 6472.

14



5 CONCLUSION

The two maps belong to thderidional circulation form and were correctly clas-
si ed by our system. Figures 10 (a) and (b) show the original maps and&sdL0
(c) and (d) the respective air ow elds.

@) (b)

(c) (d)

Figure 10: Classi cation example with different maps. Both maps belong to the
Meridional circulation form and were correctly classi ed by our system. (a) and
(b) show the original maps and Figures 10 (c) and (d) the respectiveaields.

5 Conclusion

In this work, we proposed a classi cation framework to support the caizgr

tion of weather maps in General Weather Situations (GWS). To the bestrof ou
knowledge, this is the rst work that establishes a work ow for such tasky
based on weather map images. Our framework brings together established te
nigues used in the area of visualization and image processing and machime lea
ing. We describe a set of features from weather map images that aranteler

this classi cation according to the Hess and Brezowsky main circulatiomssfor
and we present a plausible method for the extraction of these featuresoWéa,

we trained a classi cation model using support vector machines to validafeau
tures. In our rst experiments we were able to classify weather maps in the th
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5 CONCLUSION

pre-de ned circulation forms with an overall accuracy rate of 61% e@et.c Our
classi cation results can be used as a pre-categorization to guide thelassi -
cation by weather specialists.

As future work we intent to test our framework with other feature sets and
larger data sets to improve its classi cation rate. A larger number of trainimg sa
ples, mainly for the Zonal class can signi cantly improve the results. Magov
based on this extended training set, we intent to classify not only the circulatio
forms, but also the different 29 possitt@ropean General Weather Situations
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